Fenwick Trees

Bruce Merry

IOI Training Feb 2020

Outline

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
1 Basics

- A Problem
- Solution

■ Implementation

2 More Query/Update Problems
■ Using Transformations

Outline

1 Basics

- A Problem

An Example Problem

A city has N buildings in a row, numbered from 1 to N. Initially, every building has height 0 . Accept a sequence of queries and updates of the form

- Building i now has height h.
- What is the sum of the building heights in the range $[1, r]$?

An Example Problem

A city has N buildings in a row, numbered from 1 to N. Initially, every building has height 0 . Accept a sequence of queries and updates of the form

■ Building i now has height h.
\square What is the sum of the building heights in the range $[1, r]$?
You only have enough memory for $N+\epsilon$ integers.

A Non-Obvious Solution

Store a prefix sum of the heights: sum of the first i heights for every i.

Query Take the difference between two prefix sums: $O(1)$
Update Modify all prefix sums that include this element: $O(N)$

Outline

Fenwick Trees

Bruce Merry

Basics

A Problem

Solution

1 Basics

- A Problem
- Solution
- Implementation

2 More Query/Update Problems ■ Using Transformations

Segment Tree is Redundant

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation

More

Query/Update
Problems
Using
Transformations

Segment Tree is Redundant

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation

More

Query/Update
Problems
Using
Transtornations

Segment Tree is Redundant

Fenwick Trees

Bruce Merry

Basics

A Problem

Solution
Implementation
More
Query/Update Problems
Using
Transformations

These nodes are not involved in prefix sum queries.

Representation

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation
More
Query/Update Problems
Using
Transformations

Outline

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation

More

Query/Update

1 Basics

- A Problem
- Solution

■ Implementation

2 More Query/Update Problems ■ Using Transformations

Finding The Parent

Fenwick Trees

Bruce Merry

Basics

A Problem

Implementation
More
Query/Update Problems
Using
Transtormations

The parent of i is $i+2^{k}$ where $2^{k} \mid i, k$ is maximal. Example:

11001000
$+00001000$
$=11010000$

Finding The Parent

Fenwick Trees

Bruce Merry

Basics A Problem

The parent of i is $i+2^{k}$ where $2^{k} \mid i, k$ is maximal. Example:

$$
\begin{array}{r}
11001000 \\
+00001000 \\
=11010000
\end{array}
$$

To find 2^{k}, we take i and mask off $i-1$:

$$
\begin{array}{r}
11001000 \\
\& \sim 11000111 \\
=00001000
\end{array}
$$

Update

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation
More
Query/Update

```
void fenwick_add(
                vector<int> &data, int p, int v) {
    int size = data.size();
    while (p < size) {
        data[p] += v;
        p += p & ~ (p - 1);
    }
}
```


Query

Fenwick Trees

Bruce Merry

Basics

To query a prefix sum, we add the current node, then see what is left.

```
int fenwick_query(
            const vector<int> &data, int p) {
    int ans = 0;
    while (p > 0) {
        ans += data[p];
        p &= p - 1; // same as p -= p & ~ (p - 1);
    }
    return ans;
}
```


Indexing

■ Code above uses 1-based indexing.
$■$ Can be modified to present 0-based interface.

Outline

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation
More
Query/Update

Transformations

1 Basics

- A Problem
- Solution
- Implementation

2 More Query/Update Problems
■ Using Transformations

Range Update, Point Query

Fenwick Trees

Bruce Merry

Starting with an array a, handle the following queries
■ Update: increment by h across a range [I, r]

- Query: return a_{i}

Range Update, Point Query

Solution

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation
More
Query/Update

Transformations

Operate on array of adjacent differences instead:

$$
b_{1}=a_{1}, b_{i}=a_{i}-a_{i-1}
$$

Range Update, Point Query

Solution

Fenwick Trees

Bruce Merry

Basics

A Problem
Solution
Implementation
More
Query/Update

Transformations

Operate on array of adjacent differences instead:

$$
b_{1}=a_{1}, b_{i}=a_{i}-a_{i-1}
$$

Operations become:
Update $b_{l} \leftarrow b_{l}+h, b_{r+1} \leftarrow b_{r+1}-h$

Range Update, Point Query

Solution

Operate on array of adjacent differences instead:

$$
b_{1}=a_{1}, b_{i}=a_{i}-a_{i-1}
$$

Operations become:
Update $b_{l} \leftarrow b_{l}+h, b_{r+1} \leftarrow b_{r+1}-h$
Query Return $a_{i}=\sum_{1}^{i} b_{j}$ using Fenwick tree.

Range Update, Range Query

Fenwick Trees

Bruce Merry

Starting with an array a, handle the following queries
$■$ Update: increment by h across a range [I, r]
■ Query: return the sum $\sum_{i=1}^{r} a_{i}$
Note: sufficient to be able to answer $\sum_{i=1}^{r} a_{i}$.

Range Update, Range Query

Solution

Fenwick Trees

Bruce Merry

Basics
A Problem
Solution
Implementation

More
Query/Update

Problems

Using
Transformations

Start with the same transformation as before:

$$
b_{1}=a_{1}, b_{i}=a_{i}-a_{i-1}
$$

Query is

$$
\begin{aligned}
\sum_{i=1}^{r} a_{i} & =\sum_{i=1}^{r} \sum_{j=1}^{i} b_{j} \\
& =\sum_{i=1}^{r}(r-1-i) b_{i} \\
& =(r-1)\left(\sum_{i=1}^{r} b_{i}\right)-\left(\sum_{i=1}^{r} i b_{i}\right)
\end{aligned}
$$

Range Update, Range Query

Solution

Fenwick Trees

Bruce Merry

Basics
A Problem
Solution
Implementation

More
Query/Update
Problems
Using
Transformations

Start with the same transformation as before:

$$
b_{1}=a_{1}, b_{i}=a_{i}-a_{i-1}
$$

Query is

$$
\begin{aligned}
\sum_{i=1}^{r} a_{i} & =\sum_{i=1}^{r} \sum_{j=1}^{i} b_{j} \\
& =\sum_{i=1}^{r}(r-1-i) b_{i} \\
& =(r-1)\left(\sum_{i=1}^{r} b_{i}\right)-\left(\sum_{i=1}^{r} i b_{i}\right)
\end{aligned}
$$

Let $c_{i}=i b_{i}$. Then we need Fenwick trees for b and c.

